LeNet-5
Gradient-Based Learning Applied to Document Recognition
·860 words·5 mins
LeNet-5 is an early and very influential type of convolutional neural network (CNN) developed by Yann LeCun and his colleagues in 1998, designed mainly to recognize handwritten digits like those in the MNIST dataset. What makes LeNet-5 special is how it combines several clever ideas that allow it to efficiently and accurately understand images despite their complexity—ideas that were crucial stepping stones for today’s deep learning revolution.